Welcome to Math Page

1st semester Course Outline

Differential & Integral Calculus(MATH0541)

Mark Distribution in Class

Mark Distribution
Class Attendance/Performance 10
Class Test/Assignment
(Avg of before & after mid)
10+10
Mid Term 20
Final 50
Total 100

Question sets

Set-1)
Limit
Partial Derivative
Set-2)
Absolute maxima & minima
Increasing & decreasing
Set-3)
Indefinite Intregal
Set-4)
Definite Intregal
Beta & Gamma functions
Set-5)
Multiple Intregal
Area finding

Syllabus of Final

1. Successive differentiation
  • 1) \( y = 2x + \frac{4}{x} \), prove that \( x^2 \frac{d^2y}{dx^2} - y = 0 \)
  • 2) \( y = e^{ax} \), show that \( (1 - x^2) y_2 - xy_1 = a^2 y \)
  • 3) \( y = \sec(\sec x) \), show that \( y_2 = y(2y^2 - 1) \)
  • 4) \( y = Ae^{mx} + Be^{-mx}\), show that \( y_2 = -m^2y\)
  • 5) \( y = Ae^x + Be^{-x}\), show that \( y_2 - y = 0\)
  • 6) \( y = x^4 + 4x^3 + 10 \), then find \( y_2 \) and \( y_3 \)
  • 7) \( y = 8x^5 - 4x^3 + 14x^2 \), then find \( y_2 \) and \( y_3 \) and \( y_4 \)
2. Partial derivative(click me)
You just need to watch a few minutes, its easy
    -> Partial Derivative is such a differentiation where we derive with respect to one variable, while keeping the other constant.

  • example_1:
    f(x, y) = 9x3 + 5x2y + 9xy2 + 3y2
    δf / δx = 27x2 + 10xy + 9y2
    δf / δy = 5x2 + 18xy + 6y

  • 2:
    f(x, y) = 4x3y + 6x2 + 3y2x + 5y
    δf / δx = 12x2y + 12x + 3y2
    δf / δy = 4x3 + 6xy + 5

  • 3:
    f(x, y) = 7x2y3 + 5xy + 2y4
    δf / δx = 14xy3 + 5y
    δf / δy = 21x2y2 + 5x + 8y3

  • 4:
    f(x, y) = 5x4 + 2x2y2 + y3
    δf / δx = 20x3 + 4xy2
    δf / δy = 4x2y + 3y2

  • 5:
    f(x, y) = 6x2 + 3xy + 2y2
    δf / δx = 12x + 3y
    δf / δy = 3x + 4y

  • 6:
    f(x, y) = x3y2 + 2xy + y
    δf / δx = 3x2y2 + 2y
    δf / δy = 2x3y + 2x + 1
  • 3. Multiple integration(click me)
      1. \( \int x^2 e^{2x} dx \)
    4. Integration(click me)
      Formula--muzastan
    1. \( \int dx = x + C \)
    2. \( \int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1 \)
    3. \( \int \frac{1}{x} \, dx = \ln|x| + C \)
    4. \( \int \frac{1}{\sqrt{x}} \, dx = 2\sqrt{x} + C \)
    5. \( \int e^{mx} \, dx = \frac{1}{m} e^{mx} + C \)
    6. \( \int a^x \, dx = \frac{a^x}{\ln a} + C \)
    7. \( \int \cos x \, dx = \sin x + C \)
    8. \( \int \sin x \, dx = -\cos x + C \)
    9. \( \int \sec^2 x \, dx = \tan x + C \)
    10. \( \int \csc^2 x \, dx = -\cot x + C \)
    11. \( \int \sec x \tan x \, dx = \sec x + C \)
    12. \( \int \csc x \cot x \, dx = -\csc x + C \)
    13. \( \int \tan x \, dx = \ln|\sec x| + C \)
    14. \( \int \cot x \, dx = \ln|\sin x| + C \)
    15. \( \int \sec x \, dx = \ln|\sec x + \tan x| + C \)
    16. \( \int \csc x \, dx = \ln|\csc x - \cot x| + C \)
    17. \( \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1}\left( \frac{x}{a} \right) + C \)
    18. \( \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln\left| \frac{a + x}{a - x} \right| + C \)
    19. \( \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln\left| \frac{x - a}{x + a} \right| + C \)
      Problems:
    1. \( \int 5x^3 \, dx \)
    2. \( \int \frac{1}{x} \, dx \)
    3. \( \int \frac{x^4 + 1}{x^2} \, dx \)
    4. \( \int \frac{1 + x}{x} \, dx \)
    5. \( \int (x^2 + e^x + 2^x) \, dx \)
    6. \( \int (4x^3 + 3x^2 - 2x + 5) \, dx \)
    7. \( \int (1 - 3x)(1 + x) \, dx \)
    8. \( \int (3x^{-1} + 4x^2 - 3x + 8) \, dx \)
    9. \( \int (8e^x - 4a^x + 3x^{-1} + \sqrt[4]{x}) \, dx \)
    10. \( \int (2x + 9)^5 \, dx \)
    11. \( \int (\sqrt{5x + 7})^3 \, dx \)
    12. \( \int ((x^3 + 2)^3 - 3x^2) \, dx \)
    13. \( \int \frac{dx}{x \ln x \ln(\ln x)} \)
    5. Area finding(click me)
    6. Rolles and mean theorem(click me)
      Rolles and Means youtube
    • Rolles
    • 1. Solve for f(a)=f(b), if equal, move on.
      2. Check if it is continuous on the closed intervals [a,b].
      -- If polynomial, continuous on (-∞, ∞)
      -- If modulus (absolute value), continuous everywhere
      -- If rational, denominator must not be equal to 0
      -- If exponential (e^x), continuous everywhere
      -- If roots, the inside of the radical must be ≥ 0
      -- If log(x), argument must be > 0
      3. Check if it is differentiable on the open intervals (a,b).
      -- If polynomial, differentiable on (-∞, ∞)
      -- If modulus (absolute value), not differentiable where inside = 0
      -- If exponential (e^x), differentiable everywhere
      -- If rational, differentiable where denominator ≠ 0
      -- If roots, differentiable where inside > 0
      -- If log(x), differentiable where x > 0
      4. Find f'(x), change x to c, f '(c) = 0, solve for c, if c is inside the given range, thats the answer.
      1. f(x) = x(x-3)
      2. \( f(x) = -3x \sqrt{x+1} \)
      3. f(x) = x2-5x+4, [1,4]
      4. f(x) = x2/3-1, [-8,8]
      5. f(x) = x2-2x-3x+2, [-1,3]
      6. f(x) = x2-1x, [-1,1]
      7. f(x) = cos x, [0, 2π]
    • Means
      1. Must follow, both step 2 and 3.
      2. f`(c) = f(b) - f(a) ⁄ b-a
      1. f(x) = x3, [0, 1]
      2. f(x) = x4-8x, [0, 2]
      3. \( f(x) = \frac{x+1}{x} \) , \( [-1 , 2] \)
      4. f(x) = sin x, [0, π]
    7. Beta and gamma function(click me)
    Youtube learning link
    • Beta
    • Relation between Beta and Gamma functions: \(β(m, n) = \dfrac{\Gamma(m) \Gamma(n)}{\Gamma(m + n)}\)
    • \(β(m, n) = \int_0^1 x^{m-1} (1 - x)^{n-1} \, dx \quad (m, n > 0)\)
    • Symmetric property: \(β(m, n) = β(n, m)\)
    • \(β(m, n) = 2 \int_0^{\pi/2} (\sin \theta)^{2m-1} (\cos \theta)^{2n-1} \, d\theta\)
    • Gamma
    • 1) \(\Gamma(n) = \int_0^{\infty} e^{-x} x^{n-1} \, dx\)
    • 2) \(\Gamma(1) = 1\)
    • 3) \(\Gamma(n + 1) = n \Gamma(n)\)
    • 4) \(\Gamma(n + 1) = n!\)
    • 5) \(\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}\)
    • 6) \(\Gamma(m) \Gamma(1 - m) = \dfrac{\pi}{\sin(\pi m)}\)
      Exercise:
      • 1) 1) Prove that, \(\Gamma(1 / 2) = \sqrt{\pi}\)
      • 2) Evaluate \(B(3, 2)\)
      • 3) Show that \(B(m, n) = \dfrac{\Gamma(m)\Gamma(n)}{\Gamma(m + n)}\)
      • 4) Find the value of \(B\left(\dfrac{1}{2}, \dfrac{1}{2}\right)\)
      • 5) Prove that \(B(1, n) = \dfrac{1}{n}\)
      • 6) Evaluate \(B(2, 3)\) using Gamma functions
      • 7) Express \(B(m, n)\) as an integral involving sine and cosine:
        \(B(m, n) = 2 \int_0^{\pi/2} (\sin \theta)^{2m-1} (\cos \theta)^{2n-1} \, d\theta\)
      • 8) Evaluate \(\int_0^{\pi/2} \sin^4\theta \cos^2\theta \, d\theta\) using Beta function
      • 9) Evaluate \(\int_0^{\pi/2} \sin^5\theta \, d\theta\)
      • 10) Show that \(\int_0^{\pi/2} \sin^{m-1}\theta \cos^{n-1}\theta \, d\theta = \dfrac{1}{2}B\left(\dfrac{m}{2}, \dfrac{n}{2}\right)\)
      • 11) If \(\Gamma(m)\Gamma(1 - m) = \dfrac{\pi}{\sin(\pi m)}\), find the value of \(\Gamma\left(\dfrac{3}{4}\right)\Gamma\left(\dfrac{1}{4}\right)\)
      • 12) Evaluate \(\Gamma(5)\)
      • 13) Prove that \(\Gamma(n + 1) = n\Gamma(n)\) for all positive integers \(n\)
      • 14) Show that \(\Gamma(n + 1) = n!\)
      • 15) Find the value of \(\Gamma\left(\dfrac{3}{2}\right)\)
      • 16) Prove that \(\Gamma\left(\dfrac{5}{2}\right) = \dfrac{3}{4}\sqrt{\pi}\)
    8. Differentiation, monotonicity, concavity(click me)
    Youtube learning link
      5 steps:
  • Step 1: Find \( f'(x) = 0 \), find the values of x, draw a number line, point out the numbers, from -infinity, numbers, +infinity, note down the maximum and minimum points. Put the critical points in \( f(x) = 0 \) to find the y-axis values.
  • Step 2: Find \( f''(x) \) = 0, determine the concavity of the function. Draw a number line, and note down the ups (+) and downs (-). Put the fluctuation points in \( f(x) = 0 \) to find the y-axis values.
  • Step 3:Plot the critical points and the fluctuation points, (x,y) in graph, draw the graph.
    • 1) \( f(x) = 4x + \frac{64}{x} \) at \( x = 3\)
    • 2) \( f(x) = x^3 - 15x^2 + 75x \) at \( x = -8\)
    • 3) \( f(x) = x^2 - 4x + 3 \) , find intervals
    • 4) \( f(x) = x^3\) , find intervals
    • 5) \( f(x) = 3x^4 + 4x^3 - 12x^2 + 2\) , find intervals
    9.Absolute maxima and minima(click me)
    Youtube learning link
      Extreme value theorem: If a function f is continuous on a finite closed interval [a, b], then f has both a maximum and a minimum value on that interval[a,b], then f has both an absolute minima and an absolute maxima.

      Shortcut to check if interval gap is huge.
      For a continuous function f(x) on a closed interval [a,b], the Extreme Value Theorem says: Absolute max and min occur either at critical points or at the endpoints.
      Critical points: the points in f`(x) = 0.
      Endpoints: given interval, [a,b]
      1. \( f(x) = 2x^3 - 15x^2 + 36x, \quad [1,5] \)
      2. \( f(x) = 6\frac{x^4}{3} - 3\frac{x^1}{3}, \quad [-1,1] \)
      3. \( f(x) = 4x^2 - 12x + 10, \quad [1,2] \)
      4. \( f(x) = 8x - x^2 \)
      5. \( f(x) = \frac{3x}{\sqrt{4x^2 + 1}} \)
      6. \( f(x) = 1 + |9 - x^2|, \quad [-5,1] \)
      7. \( f(x) = |6 - 4x|, \quad [-3,3] \)